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Abstract
We investigate the coupling of an inhomogeneous electron system to phonons. The properties
of an electronic system composed of a mixture of microscopic ordered and disordered islands
are changed fundamentally by a phonon mode. In high-Tc cuprates, such a phase separation
scenario is supported by recent STM and nuclear quadrupole resonance studies. We show that
even a weak or moderate electron–phonon coupling can be sufficient to produce dramatic
changes in the electronic state of the inhomogeneous electron gas. The spectral properties
calculated in our approach provide a natural explanation of the low-energy nodal ARPES
features and exhibit a novel non-Fermi-liquid state stabilized through electron–phonon
coupling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An eminent feature observed in the angle-resolved photoe-
mission spectroscopy (ARPES) studies of high-Tc cuprates
is the kink-like change of electron velocity, interpreted in
terms of the coupling to oxygen phonon modes [1, 2].
These kinks are associated with a distinct break-up of the
spectral weight into a high-intensity part which develops near
the Fermi surface, and a broad structure of less intensity
at higher energies below the Fermi level. Despite the
structural differences between various types of cuprates, the
peculiarities in the dispersion at 50–80 meV were detected
in Bi2Sr2CaCu2O8+δ (Bi2212), La2−x SrxCuO4 (LSCO),
YBa2Cu3O6+x (YBCO) and other related systems [1–6], and
are believed to shed light on the microscopic mechanism
of high-Tc superconductivity. Although significant efforts
have been directed towards a theoretical investigation of
the influence of many-body interactions on the one-electron
properties of Hubbard and t–J models, typically used
for cuprates [7], the origin of the nodal ARPES features
and of their unusual doping and temperature behavior still
remains an open question.

Many-body effects are known to produce changes
in the electronic dispersion, as deduced from electronic
photoemission spectra. One mechanism, which was shown
to cause low-energy kinks, is controlled by a strong electron–
phonon coupling in the free electron gas [8, 9]. This coupling
leads to a renormalization of the electron effective mass in
the energy range close to the Fermi energy EF, below a
characteristic phonon frequency ωph: E − EF < ωph. On
the other hand, when the electrons in a metal are strongly
correlated, a purely electronic mechanism can also lead to
dispersion kinks, which have been related to a crossover
between Fermi- and non-Fermi-liquid behavior [10].

In the analysis of ARPES intensities, one should always
consider the fact that photoemission experiments analyze
electronic surface and subsurface states, which brings the
near-surface correlations into the focus. Due to the
strong interaction of these electrons with subsurface phonon
modes and virtual charge transfer excitations, the effect
of such collective modes on the electronic subsystem is
crucial [11, 12]. A direct consequence of these interactions
is a significant reduction of the local Hubbard repulsion to
values well below the electronic bandwidth 8t , where t is
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the electron hopping. This finding allows us to suggest that
mechanisms different from the purely electronic could play
a role in the appearance of the dispersion kinks in cuprates.
As the coupling with magnons cannot satisfactorily explain the
doping and temperature behavior of such kinks, we will focus
on the analysis of the interaction with phonons.

In the high-Tc cuprates another important factor, which
has to be addressed in studies of their electronic properties,
is charge inhomogeneity. In the pseudogap state and
in regimes with suppressed superconductivity, scanning
tunneling microscopy (STM) experiments indicate a local
electron order [13–16, 21–24]. This, together with
nuclear quadrupole resonance (NQR) and resonant soft
x-ray scattering studies [25–28], provides strong support
for a state of electronic phase separation as one of the
widely discussed scenarios for under- and optimally doped
cuprates [13, 15, 16, 25–27]. Such a state exhibits a mixture of
microscopic charge ordered (characterized as ‘more insulating’
with suppressed local density of states) and charge disordered
uniform (metallic) domains with a dominance of the metallic
phase at higher doping levels [16]. The ARPES intensities
obtained for the electronic phase separated state inevitably
contain the contributions from both types of domains. This
fact can be easily understood since the electrons collected on
the ARPES analyzer can be emitted from the disordered as well
as from the ordered surface islands. Due to the quantum nature
of the collected electrons, they cannot be described in terms
of pure ‘ordered’ or ‘disordered’ electron wavefunctions, but
rather as a superposition of both states. Therefore, in order to
understand ARPES intensities within such an inhomogeneous
scenario, we need to analyze the consequences of the electron–
phonon coupling not only for the disordered, but also for the
ordered sections of the surface.

In the hole-doped cuprates, the recent ab initio studies
have demonstrated a weakness of the electron–phonon
coupling which should result in a negligibly small contribution
to the formation of the dispersion kinks [17, 18]. Despite the
different approaches, these works have been focused on the
electronic homogeneous state, without any serious attention to
a possible electronic charge order. As a consequence of such
a predominant consideration of the uniform electronic state, a
general view about the relative unimportance of the electron–
phonon coupling for the electronic properties of the copper
oxide planes became widely accepted in the literature. In
an alternative approach, strongly inhomogeneous interactions
of the electrons with several optical phonon modes (buckling
and breathing) have been proposed [19], which was not really
successful in the explanation of real physical mechanisms of
spectral anomalies in the cuprates.

In the present work, we analyze the electron–phonon
coupling in the charge ordered state. We show that, in contrast
to the uniform electron gas, in the ordered system even a weak
or moderate coupling to an optical phonon mode produces
dramatic changes in the electronic properties and leads to
formation of new electronic state which cannot be described
by a standard Fermi-liquid theory. Due to significant advances
achieved in the recent STM studies of the cuprates [13, 20],
the existence of local electron order in these systems becomes

Figure 1. Schematic view of checkerboard ordering in a
two-dimensional electron gas.

a fairly well established fact. To make a step towards
an interpretation of the spectral features in the context of
the inhomogeneous state observed in the STM studies, the
inhomogeneous surface in our work is described as a mixture
of the electronically uniform and ordered states. We obtain
that the superposition of these states produces several distinct
features and a characteristic intensity break-up in the electronic
spectral maps. In our work, we connect this break-up with
the spectral anomalies observed in the cuprates. Consequently,
the proposed approach is expected to shed new light on the
mechanisms of kinks and on the origin of non-Fermi-liquid
behavior detected in these systems.

2. Electronic spectral properties in the charge
ordered state

To gain deeper insight into the ordered surface state, we
provide a comparison of a disordered two-dimensional electron
gas, characterized by a free tight-binding dispersion ε0(k),
with an ordered electron system, both coupled to an optical
phonon mode with a frequency ωph = ω0. In our studies, we
take into account the Coulomb interaction V between nearest
neighbors

Hel = �k,σ ε0(k)nkσ + V �〈i j〉ni n j (1)

where nkσ are the electron number operators and ni = �σ niσ .
The electron–phonon interaction is considered in terms of a
Holstein approach

Hel−ph = −g�i ni (bi + b†
i ) + ω0�i b

†
i bi , (2)

where the phonon operators refer to a vibration mode of
frequency ω0. The parameter g = √

ω0 Ep (Ep is the polaron-
binding energy) refers to the coupling of the holes in the copper
oxide planes to the motion of apical oxygens in the top surface
planes of the samples. In our calculations, the low-energy
phonon frequency ω0 = (0.05–0.1)t reflects the softening
of the surface optical phonon modes suggested in [12]. For
the free electronic dispersion ε0(k) = −2tη+

k − ξk (where
η+

k = cos kx + cos ky , ξk = μ + 4t ′ cos kx cos ky and μ is the
chemical potential) we choose t = 0.18 eV, t ′ = −0.4t , which
is in the range of typical values found from fitting ARPES data
for Bi2212 and Tl2201 [29, 30].

In our analysis we consider a checkerboard electronic
ordering which introduces a doubling of the square unit
cell shown in figure 1. This ordering is parametrized in
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Figure 2. Electronic band structure and self-energy for a charge
ordered system coupled to phonons where V/t = 1.3. (a) Band
structure with vanishing phonon coupling in the ordered and charge
disordered uniform states, where the dotted lines refer to
±ω0 = 0.5t . Here kT/t = 0.03 and x = 0.11. (b) Real part of
�

ph
0 (k, ω) calculated in the ordered state with ω0 = 0.05t for

different doping levels. Here k is located in the nodal region close to
the point N = (π/2, π/2) of the Brillouin zone; |k| = 0.9,
kT/t = 0.03 and Ep = 1.2t . (c) Evolution of the renormalized
low-energy band structure in the ordered state with increasing Ep for
x = 0.11 and ω0 = 0.05t . The transition at Ep = E∗

p ≈ 0.2t is
characterized by a transformation of the local maximum E2(k = N)
into a hat-shaped structure and by the buildup of a singular E2(k) in
the regions n1 and n2 with singular electron velocity v. The regions
k ∼ kF are separated by a gap 
N from k ∼ N with hole-like
excitations. The Fermi level is indicated by dots.

terms of sublattice electronic occupancies n± with order
parameter δ = n+ − n− and average electron concentration
(n+ + n−)/2 = 1 − x . The values of δ are obtained
from the minimization of the mean-field-type free energy. In
such a charge ordered state, the electronic band structure is
characterized by two subbands ε j(k) = −ξk + 4V n ± 
� .

The correction 
� =
√

(2V δ)2 + (2tη+
k − �HF+−)2 originates

from intersublattice electron correlations, introduced through
the Hartree–Fock self-energy �HF+− = − ∫

dq
∑

ωn
V ·

η+
k−q · GHF+−(q, ωn) in the Matsubara electron propagators

GHF
αβ (q, ωn). The new feature arising in the ordered band

structure is the flatness of the energy subbands ε j(k) which
is generated by their splitting through the charge-order gap

0 = 4V δ, figure 2(a). Here, in contrast to the disordered
free dispersion ε0(k), the emergence of the gap 
0 results in
the formation of new local extrema of the ordered dispersions

Figure 3. Electronic contour plots of ε0(kx , ky) and ε2(kx , ky) in the
disordered (V/t = 0.2) and ordered (V/t = 1.3) state where the
local extremal points are indicated by , M, Y, N, and S. Here
kT/t = 0.03, x = 0.11, Ep/t = 1.2.

ε j(k). Figure 3 shows a comparison of the detailed (kx ,
ky) map of the low-energy ordered subband ε2(k) with the
corresponding map of the free electron dispersion ε0(k). One
can immediately see that the electron order produces dramatic
changes in the topology of the electronic structure which
include (i) the formation of a new maximum in the central
nodal point N = (π/2, π/2) of the Brillouin zone and (ii) the
appearance of new saddle points S = (kS

x , kS
y ). The saddle

point S is located close to  (the second symmetric saddle point
is close to Y) in the nodal direction so that kS

x = kS
y = kS where

the coordinate kS is given by

cos kS =
√

(4t + 2V I+−)4 − (16t ′V δ)2

8|t ′|(4t + 2V I+−)
, (3)

where the quantity I+− parametrizes the Hartree–Fock self-
energy �HF+−(k) = −(V/2)η+

k I+−. For the chosen values of
the model parameters, the maximal values of I+− are of the
order 0.5. The expression (3) clearly shows that the saddle
point S is controlled by the charge-order gap and disappears for
weaker Coulomb repulsion V , i.e., it is absent in the disordered
uniform state with δ → 0. We also note that the nodal
point N indicated in the top map of the band ε0(k) in figure 3
corresponds in fact to the intersection point of the two branches
of ε0(k) (see figure 2(a)). These branches are generated with
the convolution to the first Brillouin zone and do not show an
extremum at N. In contrast to ε0(k), the new local extrema N
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and S of ε2(k) are well defined and should be considered as
a generic feature of the band structure in the electron-ordered
state.

When the flat low-energy subband ε2(k) is coupled to the
phonon mode, the local maximum at N and the saddle point at
S lead to van Hove singularities in the sublattice contributions
to the electronic self-energies �

ph
α = −g2

∫
dq

∑
ωn′ GHF

αα(k −
q, ωn − ωn′)D(q, ωn′ ). Here D(q, ωn′ ) = 2ω0/((iωn′)2 − ω2

0)

is the unperturbed phonon Green function3 and the one-
electron sublattice propagators GHF

αα (α = {+,−}) are
calculated in the ordered electron state in the self-consistent
Hartree–Fock approximation. Furthermore, the phonon
scattering term can be decomposed as �

ph
± = �

ph
0 ∓ 
�

ph
0 ,

where the part 
�
ph
0 ∼ V δ disappears in the charge

disordered state. With this form of �
ph
± , the renormalized

electronic propagators can be conveniently presented as a
combination of the band Green functions g j = 1/(iωn +
ξk − � j (k, ωn)): Gαα = G0 ∓ 
G0, where G0 = (g1 +
g2)/2 and 
G0 = (2V δ + 
�

ph
0 )(g1 − g2)/(�1 − �2).

In the band propagators g j , the effective self-energy parts

� j = �
ph
0 + 4V n ±

√
(
�

ph
0 + 2V δ)2 + (2tη+

k − �HF+−)2

contain information about both charge density fluctuations and
electron–phonon scattering processes. We note that �2 and g2,
which determine the low-energy quasiparticle excitations, are
of prime importance.

In figure 2(b), we show the frequency-dependent real part
of �

ph
0 (k, ω) at different doping levels x . The kinks appearing

in �
ph
0 at ω = ωi (i = 1, . . . , 3) correspond to the van

Hove singularities in �
ph
± . In the charge disordered state,

the typical van Hove singularities in �
ph
0 are caused by the

local extrema in the electron dispersion ε0(k) which appear
at the high-symmetry points , Y and M of the Brillouin zone
(figure 2(a)). In the charge ordered state, the flattening of ε2(k)

produces the additional nodal maximum of ε2(k = N) and the
saddle point at k = S, which lead to the appearance of new
van Hove singularities in �

ph
± at small ω. These low-energy

singularities correspond to the peaks in Im �
ph
0 (see figure 4)

and are related to the kinks in Re �
ph
0 (figure 2(b)). In the

ordered state, the energies of the low-frequency singularities
are determined by the equations ω − ε2(ki) ± ω0 = 0 where
ki = {, N, S}. Specifically, while the maximum at k = N
produces a jump of �

ph
0 described by Im �

ph
0 ∼ �(�N − ω) at

small �N = ε2(k = N) + ω0 > 0, the saddle point S leads to
a distinct logarithmic singular behavior of �

ph
0 :

Im �
ph
0 ∼ g2[(1 + b0 − f (ω − ω0)) log |(�S

2 − ω)/t|
+ (b0 + f (ω + ω0)) log |(�S

3 − ω)/t|], (4)

where b0 = b(ω0) and f (ω) are the Bose and Fermi
distribution functions, and the energies �S

2/3 = ε2(kS) ∓ ω0

are located close to the Fermi level: ω3 < �S
2 < ω2, ω2 <

�S
3 < 0.

3 As the main results for the electronic properties, including the topological
anomalies of the dispersion and the NFL state, appear already at small
electron–phonon coupling Ep/t ∼ 0.2, undressed phonon Green functions
have been used in the calculations of the electronic self-energy.

Figure 4. (a) Imaginary part of �
ph
0 (k, ω) and (b) scattering rate

kF = ZkF | Im �
ph
0 | (ZkF is the quasiparticle residue) in the charge

ordered state (case V/t = 1.3, |k| = 1.11) and for the free electron
gas (V/t = 0.2, |k| = 1.3). Here k is located in the nodal direction
near the N-point of the Brillouin zone, kT/t = 0.03, x = 0.11, and
Ep/t = 0.2.

As the chemical potential directly affects ε2 in these
equations, the kinks of �2(k, ω) at ω = ωi which result from
the new van Hove singularities are strongly doping dependent.
It is noteworthy that these low-frequency kinks at ω = ωi

(i = 1, . . . , 3) shown in figure 2(b) will inevitably change
the one-electron spectral properties near the Fermi level. To
see this, we present in figure 2(c) the low-energy dispersion
E2(k) of the underdoped system (x = 0.11), now calculated
from the equation ω + ξk − �2(k, ω) = 0 for the poles of
the renormalized electron propagators for different values of
electron–phonon coupling. A central property resulting from
the new van Hove singularities is a topological reconstruction
of E2(k) close to the N-point. In figure 2(c), (case Ep =
0.8t), this reconstruction corresponds to a transformation of
the maximum E2(k = N) into a new singular hat-shaped band
region, which appears above a critical value E∗

p ≈ 0.2t .
The novel nodal dispersion exhibits a nonanalytic

character in the symmetric regions n1 and n2 near the Fermi
level. In these regions, E2(k) is a multi-valued function
of k. The two extra sub-branches of E2 emerge from the
additional poles of the one-electron Green function and are
caused by the van Hove kinks in �

ph
0 (k, ω). At the singular

points S1 and S2 of the regions n1 and n2 which connect
monotonically decreasing and increasing branches of E2(k),
the nodal electron velocity v = |∇k E2(k)| approaches infinite
values. The range k close to kF with singular v is separated
from the region k ≈ N (characterized by hole-like excitations)
through a gap 
N/t ≈ 0.2. These topological anomalies are
especially significant in the under- and optimally doped range
and for polaron energies above E∗

p . The nodal properties of
the new electronic state, stabilized at Ep = E∗

p , cannot be
classified in terms of Fermi-liquid theory.

In our analysis, the nodal non-Fermi-liquid (NFL)
behavior is also evidenced by an anomalously high scattering
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Figure 5. Spectral intensity map I (k, ω) for an inhomogeneous electron system with x = 0.06 along the nodal direction. The bottom panel
displays the detailed structure of the break-up feature at ωo

2 ≈ −50 meV. Here the spectral intensity is renormalized by the weight coefficient
of the ordered state cord; V/t = 1.3, kT/t = 0.03, ω0 = 0.05t and Ep = 1.2t . The position of the Fermi level is indicated by the dashed line.

rate kF = ZkF | Im �
ph
0 | (ZkF is the calculated quasiparticle

residue). In Fermi-liquid theory of the free electron gas, one
always finds | Im �

ph
0 | � E2(k) sufficiently close to the Fermi

level, which signifies the existence of coherent quasiparticles
with a long lifetime τ = 1/k. At low T and very close to
the Fermi level, the interactions of the free electrons with an
Einstein phonon lead to an exponential decrease of Im �

ph
0 ∼

exp(−βω0) as T → 0. This means that for small excitation
energies ε close to the Fermi level there always exists a low-
temperature range for which | Im �

ph
0 | � ε, which is consistent

with the concept of Landau quasiparticles [31]. In contrast
to this, in the ordered system the nodal electron–phonon
scattering near the Fermi level produces a substantial Im �

ph
0 ∼

g2{log |�S
2/t| + log |�S

3/t| + ηN (t, t ′, V )} exp(−βω0), where
the function ηN (t, t ′, V ) results from a quadratic expansion
of ε2(k) in the vicinity of the nodal van Hove singularities.
Due to the large dominant contributions of these van Hove
singularities, in the temperature range kT/t � 0.03 which is
of relevance for the cuprates, we obtain | Im �

ph
0 | > ε, where

the excitation energies ε � kT are located close to the Fermi
level. The comparison of the corresponding Im �

ph
0 in the free

and in the ordered electron gas is presented in figure 4. As a
consequence, the strong increase of Im �

ph
0 and of the electron

scattering rate kF leads to a violation of the condition for
well defined quasiparticles in the electron-ordered system. We
emphasize that the ultimate reason for such a high electron–
phonon scattering rate is the anomalously high density of the
nodal electronic states related to the flat electron dispersion.

The incoherent NFL nodal state which develops for Ep > E∗
p is

in striking contrast to the Fermi-liquid state with its distinctive
hole-type quasiparticle excitations for Ep < E∗

p (dispersion
similar to ε2(k) in figure 2(a)). The existence of the singular
multipole structure of the one-electron Green functions and
of the anomalously high scattering rates has been confirmed
by more elaborate calculations, which include higher-order
vertex corrections in the electron–phonon contribution to the
electronic self-energy. As follows from these calculations, the
inclusion of vertex corrections leads to slight shifts of the low-
energy van Hove singularities in Im �

ph
0 , without qualitative

changes in the nature of the NFL state. In fact, evidence for an
NFL behavior along the nodal region, which is even unaffected
by the onset of superconductivity, has been found for optimally
doped BSCCO [1], in agreement with our findings.

3. Electronic phase separation state

As a state of electronic phase separation would imply a
superposition of the ordered and disordered electronic states
on the analyzer, the resulting ARPES intensity contains a
combination of the disordered (Ad(k, ω)) and the ordered
(Ao(k, ω)) spectral functions: I (k, ω) = (cord Ao(k, ω) +
cdis Ad(k, ω)) f (ω). Here the coefficients cord and cdis refer
to the ordered and disordered surface fractions. We assume
that the ratio cdis/cord depends linearly on doping, so that
cdis/cord ∼ x . The consequential dominance of the charge
disordered contribution for larger x is consistent with the

5
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Figure 6. Evolution of the spectral intensity map I (k, ω) at different doping levels. The position of the Fermi level is indicated by the
dashed line.

expansion of metallic disordered regions at higher doping
levels as observed in [16].

Figure 5 shows the spectral intensity map in the nodal
direction calculated for x = 0.06. One can clearly distinguish
two structures on this map. The needle-shaped high-intensity
structure (1) is related to the free electronic band ε0. Moreover,
a symmetric broad feature (2) appears, originating from the
ordered state. Structure (2) is located on the plot in the range
between ωo

2 ≈ −60 meV and ωo
1 ≈ −10 meV. The high

spectral intensity of structure (2) appears due to the singular
character of E2(k) in the vicinity of the point S1 of the nodal
n1-region in figure 2(c). Near the Fermi level, the NFL
region n1 forms due to an additional van Hove singularity
at ω = ω3 (see figure 2(b)), which results in multiple
poles of the electronic propagator g2 and in high spectral
intensity in the region between ωo

2 and ωo
1. In the intensity

I (k, ω), the ordering-induced feature (2) is superimposed
with the free band (1), which produces a break-up of the
intensity at ω ≈ −50 meV, shown in more detail in the
bottom panels of figure 5. This break-up of the spectral
weight into a quasiparticle peak along the needle (1) and
a broad high-intensity structure (2) is typical for the nodal

ARPES measurements observed in a wide variety of cuprate
compounds. As the break-up is produced by the charge-order
gap, it should be considered as a direct manifestation of the
local electron order in the cuprates.

We note that the broad low-energy feature (marked as
part (2) in figure 5) extends in the k-direction, which is in
contrast to the experimental observations. The reason for
such a wide spread of this charge-order-induced feature (2)
is a simplified approximation for the characteristic phonon
frequency ω0 = const. Within an Einstein approximation
the electron–phonon contribution to the electronic self-energy
�

ph
± (ω) does not depend on the momentum vector k, which

in turn leads to a wide spread of the self-energy part �2 and
of the corresponding high spectral intensity region in the k-
space. To obtain better agreement with experiment, where
the high-intensity structure is localized in k-space, one needs
to consider a realistic description for the phonon dispersion,
which is beyond the scope of our current studies.

Due to the doping dependence of �2(k, ω), the high-
intensity features also depend strongly on doping, which is
demonstrated in figure 6. The high-intensity structure, at about
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−50 meV for x = 0.04, becomes smoother with increasing
x up to x = 0.11 and in the overdoped regime (x = 0.2
in figure 6). Moreover, as the local order is destroyed with
increasing T , the contribution of ordered domains to I (k, ω)

will decrease, which can explain the fact of vanishing kinks for
higher T discussed in [5, 32].

The interpretation of ARPES intensities in terms of
electronic inhomogeneities is not only a possible scenario for
cuprates, but can also be applied for manganite compounds.
In manganites, a significant electron–phonon coupling and
an electronic phase separation of ferromagnetic metallic and
charge ordered states is strongly supported by numerous
experimental and theoretical studies [33–35]. Consequently,
the nodal ARPES features reported for La1.2Sr1.8Mn2O7 [36]
can also be explained by the proposed approach for
inhomogeneous states.

In conclusion, we show that coupling to phonon modes
leads to different spectral properties in ordered and disordered
electronic states. It appears to be the key mechanism
responsible for the main features detected in ARPES
experiments of high-Tc cuprates. The broad character of
the ARPES features can be related to the incoherent nature
of the nodal non-Fermi-liquid state, which forms essentially
due to the electron–phonon coupling. In this context, the
implications of electron–phonon coupling in charge ordered
systems demonstrate in a novel way how collective modes can
qualitatively change the fundamental properties of the electron
liquid.
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